A 43- to 54-year follow-up of 1000 patients with congenital heart disease

In this paper by Drs. James H. Moller and Ray C. Anderson (The American Journal of Cardiology, 2013, in press, see link below), the authors followed the survival of 994 patients with various congenital heart defects that were evaluated in 1952-1963. These patients were seen by these doctors early in life (infancy or childhood) and then they were followed into adulthood, which is now a time period of 43-54 years! The authors have published similar follow-up studies in the past such as a follow-up ranging from 26-37 years following the initial diagnosis.

This study is not an experiment but simply an observational study where they simply measure various health metrics at regular checks. It may be helpful in predicting what trajectory your child or adult might follow depending upon their condition but remember that in this study, these children were diagnosed in 1952-1963. Luckily for children born more recently that have similar heart defects today, their treatment and diagnosis may be much more advanced and refined than the children that were diagnosed in 1952-1963. I enjoy these types of ‘follow-up’ papers because they help to remove some of the cloud of confusion or lack of clarity on the future for children born today with congenital heart defects.

As the authors indicate, it is surprising and encouraging that ~64% of these patients that were born from 1952-1963 were still alive >50 years after their initial diagnosis. This is encouraging because we can only hope that the treatment for children with the same conditions that are born today will have even higher probabilities of survival due to improved and refined treatment. These types of papers are also important for parents with children with congenital heart defects as well as adults living with congenital heart defects because they demonstrate the importance of voluntarily enrolling in such follow-up studies so that more data and patterns can be identified.

Here is a quick summary of some of the major results of this paper:

1) Around 63% of patients were alive almost 50 years later and risk of death declines after surviving first 10 years of life. This study was based at the Departments of Medicine and Pediatrics at the University of Minnesota in Minneapolis. The authors report information about survival from 994 patients that were diagnosed with a congenital heart defect from 1952-1963. Of these 994 patients, 63.6% (632) were alive as of 31 December 2006 (apparently the date of the last evaluation). For those patients that had died, most of the deaths (57.7% or 209/362 patients) occurred in the first 10 years of life with many (34.5% or 125/362 patients) occurring in their first year of life. For those that survived past 10 years of age, the rate of death was relatively equal for patients in their 20’s, 30’s, 40’s, 50’s, and 60’s (7-10% died in each decade of life). Although it would be preferable to have even lower rates of death, it is interesting to note that the rate of death is about equal for those that reached 20 years of age.

2) Around 1/3 of patients died from cardiac issues. The authors report the cause of death for 130 adult patients (I think this means those that survived until at least 20 years of age, though this is not clear). Perhaps importantly, 40% of these deaths were from non-cardiac issues (cancer, accidents, diabetes, suicide, etc.). For those patients that died through cardiac issues, sudden death was the most common cause (~27%) with congestive heart failure, death while waiting for heart transplant, myocardial infarction (heart attach), cardiac reoperation, etc. having similar frequencies.

3) The probability of survival from birth to 10, 20, 30, 40, 50, 60 years of age was markedly lower for patients that are cyanotic (low oxygen saturations). How cyanosis was measured and the cut-off for the cyanotic group versus the other group is not clear to me.

4) Patients with only a ventricular septal defect, patent ductus arteriosus, or an atrial septal defect (no other condition) actually had a similar probability of survival to normal patients from 0-60 years of age. However, patients that had one of these three conditions plus another defect (not clear what they mean by ‘other anomalies’ here) had a much lower probability of survival from 0-60 years of age.

Link to this paper:

Advertisements